Novel features of the energy-momentum tensor of a Casimir apparatus in a weak gravitational field

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys. A: Math. Theor. 41289801
(http://iopscience.iop.org/1751-8121/41/28/289801)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.149
The article was downloaded on 03/06/2010 at 06:59

Please note that terms and conditions apply.

Corrigendum

Novel features of the energy-momentum tensor of a Casimir apparatus in a weak gravitational field
 Giuseppe Bimonte, Enrico Calloni, Giampiero Esposito and Luigi Rosa 2008 J. Phys. A: Math. Theor. 41164056

Equation (13) should read

$$
\begin{equation*}
T^{(1) 00}=-\frac{\pi^{2}}{1200 a^{3}}+\frac{11 \pi^{2} z}{3600 a^{4}}-\frac{\pi \cos \left(\frac{\pi z}{a}\right)}{60 a^{3} \sin ^{3}\left(\frac{\pi z}{a}\right)} \tag{13}
\end{equation*}
$$

Thus, there is no trace anomaly, and the title of section 4 should read Push. The formula for ρ at the beginning of section 4 should read as

$$
\rho=-\frac{\pi^{2}}{720 a^{4}}+\frac{2 g}{c^{2}}\left(-\frac{\pi^{2}}{1200 a^{3}}+\frac{\pi^{2} z}{600 a^{4}}-\frac{\pi}{60 a^{3}} \frac{\cos \left(\frac{\pi z}{a}\right)}{\sin ^{3}\left(\frac{\pi z}{a}\right)}\right)+\mathrm{O}\left(g^{2}\right),
$$

while thereafter the energy stored in the Casimir device should read as

$$
E=-\frac{\hbar c \pi^{2}}{720} \frac{A}{a^{3}}\left(1+\frac{1}{2} \frac{g a}{c^{2}}\right) .
$$

The last two unnumbered equations of section 4, and the last two lines of the abstract, should be deleted.

